Preprocess¶
In this notebook we will preprocess the observations and simulations (UNSEEN).
##Load pacakages
import xarray as xr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
##This is so variables get printed within jupyter
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
Observations¶
Let’s download the observations. We do this using the CABra dataset and tools. See Almagro et al. (2021).
Using the shiny app you can explore the available observation stations. We select them and download them into this repository using the wget
command
# !wget -O ../Data/Obidos_record_CABra.txt https://thecabradataset.shinyapps.io/CABra/_w_dc7ddebc/session/f594ed5c6efaa6a6431e2fcdc0b525ee/download/downloadData?w=dc7ddebc
# !wget -O ../Data/Xingu_record_CABra.txt https://thecabradataset.shinyapps.io/CABra/_w_d75db33b/session/9854b2d5ed51bb88a3fe58c9cae6392c/download/downloadData?w=d75db33b
# !wget -O ../Data/Tapajos_record_CABra.txt https://thecabradataset.shinyapps.io/CABra/_w_d75db33b/session/9854b2d5ed51bb88a3fe58c9cae6392c/download/downloadData?w=d75db33b
Here we load the downloaded datasets. We skip the first rows that provide additional information
Obidos_record = pd.read_csv('../Data/Obidos_record_CABra.txt', sep='\t',skiprows = 8)#, header=[0,1]) # Downloaded from BACra. Skip the header
# Obidos_record
Xingu_record = pd.read_csv('../Data/Xingu_record_CABra.txt', sep='\t',skiprows = 8)#, header=[0,1]) # Downloaded from BACra. Skip the header
# Xingu_record
Tapajos_record = pd.read_csv('../Data/Tapajos_record_CABra.txt', sep='\t',skiprows = 8)#, header=[0,1]) # Downloaded from BACra. Skip the header
# Tapajos_record
Then we need to do some pre-processing. First we name the columns so they can be used to create a datetime format. Then we remove the first row because that provides the units (m3/s) and not values. Third we create the datetime format and set it as index. Finally, we set the streamflow value type to float.
Obidos_record.columns = ['Year', 'Month', 'Day', 'Streamflow', 'Quality']
Obidos_record = Obidos_record[1:]
date = pd.to_datetime(Obidos_record[['Year', 'Month', 'Day']])
Obidos_record.index = date
Obidos_record['Streamflow'] = Obidos_record['Streamflow'].astype(float)
Obidos_record
Xingu_record.columns = ['Year', 'Month', 'Day', 'Streamflow', 'Quality']
Xingu_record = Xingu_record[1:]
Xingu_record.index = date #same date as Obidos
Xingu_record['Streamflow'] = Xingu_record['Streamflow'].astype(float)
Xingu_record
Tapajos_record.columns = ['Year', 'Month', 'Day', 'Streamflow', 'Quality']
Tapajos_record = Tapajos_record[1:]
Tapajos_record.index = date #same date as Obidos
Tapajos_record['Streamflow'] = Tapajos_record['Streamflow'].astype(float)
Tapajos_record
Year | Month | Day | Streamflow | Quality | |
---|---|---|---|---|---|
1980-10-01 | 1980 | 10 | 1 | 94579.891 | 2 |
1980-10-02 | 1980 | 10 | 2 | 94057.414 | 2 |
1980-10-03 | 1980 | 10 | 3 | 93189.023 | 2 |
1980-10-04 | 1980 | 10 | 4 | 92669.445 | 2 |
1980-10-05 | 1980 | 10 | 5 | 91805.898 | 2 |
... | ... | ... | ... | ... | ... |
2010-09-26 | 2010 | 9 | 26 | 97208.531 | 2 |
2010-09-27 | 2010 | 9 | 27 | 95978.469 | 2 |
2010-09-28 | 2010 | 9 | 28 | 94405.609 | 2 |
2010-09-29 | 2010 | 9 | 29 | 92323.664 | 2 |
2010-09-30 | 2010 | 9 | 30 | 90259.180 | 2 |
10957 rows × 5 columns
Year | Month | Day | Streamflow | Quality | |
---|---|---|---|---|---|
1980-10-01 | 1980 | 10 | 1 | 995.854 | 2 |
1980-10-02 | 1980 | 10 | 2 | 1011.401 | 2 |
1980-10-03 | 1980 | 10 | 3 | 1011.401 | 2 |
1980-10-04 | 1980 | 10 | 4 | 1027.081 | 2 |
1980-10-05 | 1980 | 10 | 5 | 1027.081 | 2 |
... | ... | ... | ... | ... | ... |
2010-09-26 | 2010 | 9 | 26 | 896.103 | 2 |
2010-09-27 | 2010 | 9 | 27 | 881.573 | 2 |
2010-09-28 | 2010 | 9 | 28 | 881.573 | 2 |
2010-09-29 | 2010 | 9 | 29 | 867.188 | 2 |
2010-09-30 | 2010 | 9 | 30 | 852.945 | 2 |
10957 rows × 5 columns
Year | Month | Day | Streamflow | Quality | |
---|---|---|---|---|---|
1980-10-01 | 1980 | 10 | 1 | 2653.697 | 2 |
1980-10-02 | 1980 | 10 | 2 | 2626.756 | 2 |
1980-10-03 | 1980 | 10 | 3 | 2599.999 | 2 |
1980-10-04 | 1980 | 10 | 4 | 2560.203 | 2 |
1980-10-05 | 1980 | 10 | 5 | 2599.999 | 2 |
... | ... | ... | ... | ... | ... |
2010-09-26 | 2010 | 9 | 26 | 2367.308 | 2 |
2010-09-27 | 2010 | 9 | 27 | 2305.231 | 2 |
2010-09-28 | 2010 | 9 | 28 | 2244.249 | 2 |
2010-09-29 | 2010 | 9 | 29 | 2196.246 | 2 |
2010-09-30 | 2010 | 9 | 30 | 2172.502 | 2 |
10957 rows × 5 columns
Obidos_record_monthly = Obidos_record['Streamflow'].resample('M').mean()
Obidos_record_monthly = Obidos_record_monthly.to_xarray()
Obidos_record_annual = Obidos_record_monthly.groupby("index.year").max(dim="index")
Xingu_record_monthly = Xingu_record['Streamflow'].resample('M').mean()
Xingu_record_monthly = Xingu_record_monthly.to_xarray()
Xingu_record_annual = Xingu_record_monthly.groupby("index.year").max(dim="index")
Tapajos_record_monthly = Tapajos_record['Streamflow'].resample('M').mean()
Tapajos_record_monthly = Tapajos_record_monthly.to_xarray()
Tapajos_record_annual = Tapajos_record_monthly.groupby("index.year").max(dim="index")
We want observations representative of streamflow at the mouth of the Amazon. Obidos is the observation station closest to the outlet. The rivers Xingu and Tapajos still join the Amazon river downstream of Obidos. We therefore pool Obidos, Xingu and Tapajos together to represent total streamflow at the river mouth. We sum the monthly streamflow values:
Observations_pooled_monthly = Obidos_record_monthly + Xingu_record_monthly + Tapajos_record_monthly
Observations_pooled_annual = Observations_pooled_monthly.groupby("index.year").max(dim="index")
Let’s store these annual maxima streamflow values. We remove the values for the year 1980 because the series starts in October 1980 and the annual maximum flood peak (somewhere in March-May) was not recorded.
Obidos_record_annual_df = Obidos_record_annual.to_dataframe()
Obidos_record_annual_df[1:].to_csv('../Data/Obidos_CABra_record_annual_df.csv')
Xingu_record_annual_df = Xingu_record_annual.to_dataframe()
Xingu_record_annual_df[1:].to_csv('../Data/Xingu_CABra_record_annual_df.csv')
Tapajos_record_annual_df = Tapajos_record_annual.to_dataframe()
Tapajos_record_annual_df[1:].to_csv('../Data/Tapajos_CABra_record_annual_df.csv')
Observations_pooled_annual_df = Observations_pooled_annual.to_dataframe()
Observations_pooled_annual_df[1:].to_csv('../Data/Observations_pooled_annual_df.csv')
Observations_pooled_monthly.to_netcdf('../Data/Observations_pooled_monthly.nc')
Show observed streamflow timeseries¶
Some functions to create the figure for publication:
plt.rcParams["font.family"] = "sans-serif" ##change font
plt.rcParams['font.size'] = 7 ## change font size
# plt.rcParams['svg.fonttype'] = 'none' ## so inkscape recognized texts in svg file
plt.rcParams['pdf.fonttype'] = 42 ## so illustrator can recognize text
plt.figure(figsize=(80/25.4, 60/25.4))
(Observations_pooled_monthly/1000).plot(label = 'Pooled', color = 'blue', linestyle = '--', alpha=0.7)
(Obidos_record['Streamflow']/1000).plot(label = 'Obidos', color = 'brown')
(Xingu_record['Streamflow']/1000).plot(label = 'Xingu', color = 'black')
(Tapajos_record['Streamflow']/1000).plot(label = 'Tapajos', color = 'grey')
plt.legend()
plt.ylabel('Discharge [1000 m3/s] ')
plt.xlabel('')
# plt.savefig('../Graphs/Discharge_subcatchments.pdf',
# bbox_inches='tight',
# dpi =300)
# plt.xlim('2008', '2010')
<Figure size 226.772x170.079 with 0 Axes>
[<matplotlib.lines.Line2D at 0x2ae87c931d90>]
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87bedd880>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87bedd880>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87bedd880>
<matplotlib.legend.Legend at 0x2ae87c98bbb0>
Text(0, 0.5, 'Discharge [1000 m3/s] ')
Text(0.5, 0, '')

plt.figure(figsize=(90/25.4, 40/25.4))
(Observations_pooled_monthly.to_dataframe()['Streamflow']/1000).plot(label = 'Pooled', marker='o',
markersize = 3,color = 'blue')
(Obidos_record_monthly.to_dataframe()['Streamflow']/1000).plot(label = 'Obidos',marker='o',
markersize = 3, color = 'brown')
(Xingu_record_monthly.to_dataframe()['Streamflow']/1000).plot(label = 'Xingu',marker='o',
markersize = 3, color = 'black')
(Tapajos_record_monthly.to_dataframe()['Streamflow']/1000).plot(label = 'Tapajos',marker='o',
markersize = 3, color = 'grey')
plt.legend()
plt.ylabel('Discharge [1000 m3/s] ')
plt.xlabel('')
plt.xlim('2008', '2010')
# plt.savefig('../Graphs/Discharge_subcatchments_2009.pdf',
# bbox_inches='tight',
# dpi =300)
<Figure size 255.118x113.386 with 0 Axes>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87ee641f0>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87ee641f0>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87ee641f0>
<matplotlib.axes._subplots.AxesSubplot at 0x2ae87ee641f0>
<matplotlib.legend.Legend at 0x2ae87eedd0d0>
Text(0, 0.5, 'Discharge [1000 m3/s] ')
Text(0.5, 0, '')
(456.0, 480.0)

Longer Obidos record¶
Alternatively from CABra, a longer Obidos record can be downloaded from Hybam. We use the dataset from CABra because it contains quality-controlled data over a homogenous period for all three stations. We plot the daily, monthly and annual maximum streamflow values from the longer Obidos record here just for reference.
Amazon_observed = pd.read_csv(dirname + 'Obs/17050001_debits_Obidos.csv', skiprows = [1]) # Downloaded from Hybam. Skip the empty row after the header
Amazon_observed = Amazon_observed.set_index(['date'])
Amazon_observed['valeur'] = Amazon_observed['valeur'].astype(float)
Amazon_observed['valeur'].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x2ac6e48f2e80>

Amazon_observed.index = pd.to_datetime(Amazon_observed.index)
Amazon_observed_monthly = Amazon_observed['valeur'].resample('M').mean()
Amazon_observed_monthly = Amazon_observed_monthly.to_xarray()
Amazon_observed_monthly
Amazon_observed_monthly.plot()
- date: 624
- 1.6e+05 1.534e+05 1.594e+05 ... 1.425e+05 1.482e+05 1.858e+05
array([159990. , 153405.88235294, 159358.62068966, 173232.14285714, 193017.24137931, 184639.28571429, 171041.37931034, 155737.93103448, 145192.85714286, 138806.89655172, 133157.14285714, 135989.65517241, 144501.61290323, 152991.78571429, 162802.58064516, 181400. , 194876.77419355, 182585.33333333, 170936.4516129 , 152741.29032258, 135668. , 118927.09677419, 117201.33333333, 120705.48387097, 137167.74193548, 153639.28571429, 173793.5483871 , 191043.33333333, 204845.16129032, 201914.33333333, 194100.32258065, 177725.48387097, 155331.66666667, 136926.4516129 , 124593.66666667, 123500.32258065, 145848.38709677, 169921.42857143, 189409.67741935, 213793.33333333, 223687.09677419, 225710. , 217416.12903226, 198635.48387097, 174693.33333333, 153025.80645161, 149393.33333333, 151693.5483871 , 154351.61290323, 178810.34482759, 198719.35483871, 209243.33333333, 220783.87096774, 218426.66666667, 208100. , 188761.29032258, 169500. , 150912.90322581, 140270. , 146758.06451613, 156967.74193548, 165350. , 177645.16129032, 192883.33333333, 211667.74193548, 215596.66666667, 209987.09677419, 196945.16129032, 178903.33333333, 162919.35483871, 152030. , 158661.29032258, 171141.93548387, 190014.28571429, 205212.90322581, 219370. , 229090.32258065, 225310. , 216412.90322581, 200948.38709677, 180566.66666667, 162448.38709677, 157523.33333333, 158809.67741935, 169022.58064516, 187225. , 203522.58064516, 222570. , 233161.29032258, 233406.66666667, 224990.32258065, 209525.80645161, 187910. , 162722.58064516, 144666.66666667, 148509.67741935, 161806.4516129 , 183182.75862069, 200280.64516129, 223366.66666667, 236377.41935484, 233306.66666667, 222522.58064516, 196570.96774194, 166903.33333333, 140332.25806452, 134112. , 141894.83870968, 153912.90322581, 159728.57142857, 174170.96774194, 195820. , 216290.32258065, 216980. , 207625.80645161, 184416.12903226, 158160. , 143174.19354839, 148663.33333333, 155793.5483871 , 174129.03225806, 176889.28571429, 191780.64516129, 204383.33333333, 216806.4516129 , 213470. , 203364.51612903, 182277.41935484, 158106.66666667, 141816.12903226, 141893.33333333, 148538.70967742, 164000.32258065, 170758.57142857, 182020.64516129, 201146. , 215718.06451613, 214013.33333333, 198412.90322581, 168658.06451613, 142146.66666667, 123460.64516129, 126044. , 131620. , 136812.58064516, 145015.17241379, 149498.70967742, 162299.66666667, 168711.29032258, 170154.66666667, 162796.12903226, 144518.06451613, 121857.33333333, 114687.74193548, 125565.33333333, 130495.16129032, 141596.77419355, 153765. , 166471.29032258, 180551.33333333, 183706.12903226, 180671.66666667, 175157.41935484, 159779.67741935, 135669.33333333, 117346.12903226, 118027. , 126136.4516129 , 162183.87096774, 183653.57142857, 198848.38709677, 215070. , 229500. , 225903.33333333, 212058.06451613, 186519.35483871, 160593.33333333, 137196.77419355, 135790. , 147161.29032258, 144690.32258065, 151403.92857143, 154640.96774194, 166844.66666667, 173078.06451613, 171604.66666667, 158617.74193548, 133749.67741935, 118146.33333333, 110291.93548387, 115783.33333333, 125234.19354839, 155216.12903226, 169324.13793103, 188167.74193548, 203726.66666667, 216577.41935484, 210246.66666667, 200974.19354839, 180803.22580645, 158903.33333333, 138687.09677419, 138736.66666667, 144512.90322581, 160816.12903226, 172792.85714286, 175183.87096774, 175723.33333333, 187064.51612903, 186546.66666667, 178922.58064516, 165554.83870968, 152156.66666667, 137290.32258065, 136126.66666667, 146677.41935484, 163445.16129032, 174442.85714286, 191148.38709677, 207290. , 214938.70967742, 213923.33333333, 211664.51612903, 193651.61290323, 166033.33333333, 151409.67741935, 155783.33333333, 161629.03225806, 163149.03225806, 172997.14285714, 188775.80645161, 199710.33333333, 206354.19354839, 199661.66666667, 184520. , 162041.29032258, 140093.33333333, 123817.41935484, 125252. , 135171.29032258, 150896.77419355, 167005.17241379, 184938.06451613, 190921.33333333, 204007.41935484, 203726.33333333, 194710.96774194, 172976.77419355, 142157.33333333, 123654.83870968, 128414.33333333, 145727.74193548, 168693.5483871 , 191200. , 215167.74193548, 232133.33333333, 242161.29032258, 241496.66666667, 232438.70967742, 211806.4516129 , 183190. , 156074.19354839, 159243.33333333, 155912.90322581, 142030. , 163491.42857143, 188228.38709677, 198844. , 207087.41935484, 204731.66666667, 196745.48387097, 179346.12903226, 154155. , 123973.5483871 , 124111. , 141002.90322581, 162230.32258065, 175321.42857143, 180266.12903226, 198963.33333333, 211352.58064516, 211513.33333333, 200843.22580645, 184580.32258065, 156218.66666667, 126294.19354839, 120911.66666667, 128217.09677419, 123825.80645161, 131867.24137931, 147475.80645161, 167947.66666667, 170802.25806452, 160388. , 147620.64516129, 134309.35483871, 124250. , 117393.5483871 , 113687.66666667, 129579.35483871, 163096.77419355, 176657.14285714, 196606.4516129 , 213066.66666667, 219858.06451613, 214733.33333333, 203861.29032258, 181938.70967742, 158683.33333333, 140480.64516129, 143673.33333333, 159051.61290323, 185187.09677419, 200853.57142857, 217022.58064516, 226426.66666667, 232941.93548387, 231390. , 224377.41935484, 203893.5483871 , 180130. , 157925.80645161, 145620. , 152058.06451613, 150042.58064516, 154928.21428571, 161921.61290323, 179091. , 195296.4516129 , 194992. , 183491.61290323, 160557.41935484, 122615.33333333, 107430.32258065, 114322.66666667, 133936.4516129 , 158506.4516129 , 173765.51724138, 197551.61290323, 214376.66666667, 222306.4516129 , 219183.33333333, 207396.77419355, 185370.96774194, 158843.33333333, 137006.4516129 , 140616.66666667, 147164.51612903, 155704.19354839, 167337.5 , 190723.22580645, 215615.66666667, 227680. , 217498. , 198920.32258065, 171635.80645161, 136804. , 113224.83870968, 114868.33333333, 126282.90322581, 132720. , 141332.14285714, 154368.70967742, 167472.33333333, 183548.70967742, 185866. , 182069.03225806, 161955.16129032, 131511. , 107265.80645161, 116008.66666667, 130903.87096774, 157685.48387097, 179518.57142857, 204841.93548387, 217696. , 232756.12903226, 233121. , 222678.70967742, 203346.4516129 , 174129.33333333, 142250.32258065, 130017.33333333, 133642.58064516, 153687.09677419, 168531.03448276, 187735.48387097, 209240. , 225093.5483871 , 220770. , 214709.67741935, 197680.64516129, 172570. , 149845.16129032, 142913.33333333, 140841.93548387, 153865.80645161, 175410. , 195322.90322581, 215774.33333333, 218854.83870968, 214689.33333333, 202696.77419355, 179495.16129032, 153604.66666667, 129823.87096774, 127428. , 137232.25806452, 162026.4516129 , 168710.71428571, 185858.70967742, 202931.66666667, 212483.22580645, 216822.66666667, 210545.16129032, 192482.90322581, 167656.33333333, 136548.06451613, 133883.33333333, 145234.83870968, 153135.48387097, 162914.28571429, 172335.48387097, 194616.66666667, 205812.90322581, 207393.33333333, 199445.16129032, 184132.25806452, 161760. , 136606.4516129 , 133133.33333333, 134096.77419355, 147745.16129032, 161437.93103448, 174722.58064516, 191656.66666667, 200106.4516129 , 192553.33333333, 180912.90322581, 167948.38709677, 150356.66666667, 135158.06451613, 131036.66666667, 138129.03225806, 147398.06451613, 157749.64285714, 186830.96774194, 204369. , 213724.51612903, 201741.66666667, 183395.48387097, 154392.90322581, 124483.66666667, 109595.80645161, 120522. , 136406.77419355, 166021.61290323, 187329.28571429, 211292.25806452, 223593.33333333, 240700.64516129, 232577.33333333, 211487.41935484, 180836.12903226, 150470.66666667, 128098.70967742, 133381.33333333, 148725.16129032, 159992.90322581, 172859.28571429, 183024.83870968, 198079.66666667, 215370.96774194, 216587.33333333, 203909.03225806, 181683.87096774, 149543.66666667, 128128.06451613, 132560.33333333, 145751.61290323, 180690.32258065, 198544.82758621, 214406.4516129 , 221700. , 225629.03225806, 230763.33333333, 229022.58064516, 203406.4516129 , 163803.33333333, 140361.29032258, 143526.66666667, 161583.87096774, 189352.25806452, 211859.28571429, 225068.38709677, 225309.33333333, 225533.5483871 , 230320. , 235092.58064516, 230592.58064516, 192166.33333333, 143407.74193548, 130934. , 141044.51612903, 154912.25806452, 168668.57142857, 178728.06451613, 203335.66666667, 219332.25806452, 218130.66666667, 207869.03225806, 178834.83870968, 131336. , 100585.48387097, 105920.33333333, 124484.19354839, 147180. , 169073.57142857, 192771.93548387, 208831.33333333, 219251.61290323, 224297. , 222512.90322581, 198161.93548387, 145980.33333333, 123462.58064516, 124918.66666667, 139176.4516129 , 170761.93548387, 198367.5862069 , 215769.67741935, 219950.33333333, 224648.70967742, 228148.66666667, 229854.19354839, 206959.67741935, 159179.33333333, 124828.38709677, 121630.33333333, 131487.09677419, 161041.93548387, 182385.71428571, 209870.96774194, 218096.66666667, 224183.87096774, 228973.33333333, 228990.32258065, 209925.80645161, 184420. , 153238.70967742, 151423.33333333, 163387.09677419, 177458.06451613, 191432.14285714, 210151.61290323, 217743.33333333, 222870.96774194, 226630. , 229683.87096774, 224922.58064516, 192666.66666667, 157038.70967742, 151176.66666667, 159619.35483871, 169440.64516129, 185877.5 , 206551.29032258, 216025.33333333, 220146.77419355, 224027. , 226647.09677419, 220963.87096774, 191105. , 131321.61290323, 122400.66666667, 124959.35483871, 129328.33333333, 137817.5 , 158168.33333333, 181599.31034483, 198211. , 198985.51724138, 193301.33333333, 177075. , 145862.75862069, 118326.33333333, 145490.71428571, 159520. , 164965.48387097, 187271.78571429, 208632.25806452, 212934. , 219757.74193548, 221421.33333333, 217095.16129032, 190022.90322581, 143501. , 124655.80645161, 133603.66666667, 143294.83870968, 162214.19354839, 180397.85714286, 191146.12903226, 203585. , 216165.16129032, 219578.33333333, 218352.58064516, 201040.64516129, 177149.66666667, 133309.67741935, 127903. , 159911.93548387, 185796.77419355, 202632.14285714, 214106.4516129 , 218686.66666667, 225622.58064516, 229726.66666667, 230964.51612903, 218274.19354839, 185626.66666667, 142461.29032258, 148210. , 185806.66666667])
- date(date)datetime64[ns]1968-01-31 ... 2019-12-31
array(['1968-01-31T00:00:00.000000000', '1968-02-29T00:00:00.000000000', '1968-03-31T00:00:00.000000000', ..., '2019-10-31T00:00:00.000000000', '2019-11-30T00:00:00.000000000', '2019-12-31T00:00:00.000000000'], dtype='datetime64[ns]')
[<matplotlib.lines.Line2D at 0x2ac6e4a9b400>]

Obidos_record = Amazon_observed_monthly
Obidos_record
Obidos_record_annual = Obidos_record.groupby("date.year").max(dim="date")
Obidos_record_annual
Obidos_record_annual.plot()
- date: 624
- 1.6e+05 1.534e+05 1.594e+05 ... 1.425e+05 1.482e+05 1.858e+05
array([159990. , 153405.88235294, 159358.62068966, 173232.14285714, 193017.24137931, 184639.28571429, 171041.37931034, 155737.93103448, 145192.85714286, 138806.89655172, 133157.14285714, 135989.65517241, 144501.61290323, 152991.78571429, 162802.58064516, 181400. , 194876.77419355, 182585.33333333, 170936.4516129 , 152741.29032258, 135668. , 118927.09677419, 117201.33333333, 120705.48387097, 137167.74193548, 153639.28571429, 173793.5483871 , 191043.33333333, 204845.16129032, 201914.33333333, 194100.32258065, 177725.48387097, 155331.66666667, 136926.4516129 , 124593.66666667, 123500.32258065, 145848.38709677, 169921.42857143, 189409.67741935, 213793.33333333, 223687.09677419, 225710. , 217416.12903226, 198635.48387097, 174693.33333333, 153025.80645161, 149393.33333333, 151693.5483871 , 154351.61290323, 178810.34482759, 198719.35483871, 209243.33333333, 220783.87096774, 218426.66666667, 208100. , 188761.29032258, 169500. , 150912.90322581, 140270. , 146758.06451613, 156967.74193548, 165350. , 177645.16129032, 192883.33333333, 211667.74193548, 215596.66666667, 209987.09677419, 196945.16129032, 178903.33333333, 162919.35483871, 152030. , 158661.29032258, 171141.93548387, 190014.28571429, 205212.90322581, 219370. , 229090.32258065, 225310. , 216412.90322581, 200948.38709677, 180566.66666667, 162448.38709677, 157523.33333333, 158809.67741935, 169022.58064516, 187225. , 203522.58064516, 222570. , 233161.29032258, 233406.66666667, 224990.32258065, 209525.80645161, 187910. , 162722.58064516, 144666.66666667, 148509.67741935, 161806.4516129 , 183182.75862069, 200280.64516129, 223366.66666667, 236377.41935484, 233306.66666667, 222522.58064516, 196570.96774194, 166903.33333333, 140332.25806452, 134112. , 141894.83870968, 153912.90322581, 159728.57142857, 174170.96774194, 195820. , 216290.32258065, 216980. , 207625.80645161, 184416.12903226, 158160. , 143174.19354839, 148663.33333333, 155793.5483871 , 174129.03225806, 176889.28571429, 191780.64516129, 204383.33333333, 216806.4516129 , 213470. , 203364.51612903, 182277.41935484, 158106.66666667, 141816.12903226, 141893.33333333, 148538.70967742, 164000.32258065, 170758.57142857, 182020.64516129, 201146. , 215718.06451613, 214013.33333333, 198412.90322581, 168658.06451613, 142146.66666667, 123460.64516129, 126044. , 131620. , 136812.58064516, 145015.17241379, 149498.70967742, 162299.66666667, 168711.29032258, 170154.66666667, 162796.12903226, 144518.06451613, 121857.33333333, 114687.74193548, 125565.33333333, 130495.16129032, 141596.77419355, 153765. , 166471.29032258, 180551.33333333, 183706.12903226, 180671.66666667, 175157.41935484, 159779.67741935, 135669.33333333, 117346.12903226, 118027. , 126136.4516129 , 162183.87096774, 183653.57142857, 198848.38709677, 215070. , 229500. , 225903.33333333, 212058.06451613, 186519.35483871, 160593.33333333, 137196.77419355, 135790. , 147161.29032258, 144690.32258065, 151403.92857143, 154640.96774194, 166844.66666667, 173078.06451613, 171604.66666667, 158617.74193548, 133749.67741935, 118146.33333333, 110291.93548387, 115783.33333333, 125234.19354839, 155216.12903226, 169324.13793103, 188167.74193548, 203726.66666667, 216577.41935484, 210246.66666667, 200974.19354839, 180803.22580645, 158903.33333333, 138687.09677419, 138736.66666667, 144512.90322581, 160816.12903226, 172792.85714286, 175183.87096774, 175723.33333333, 187064.51612903, 186546.66666667, 178922.58064516, 165554.83870968, 152156.66666667, 137290.32258065, 136126.66666667, 146677.41935484, 163445.16129032, 174442.85714286, 191148.38709677, 207290. , 214938.70967742, 213923.33333333, 211664.51612903, 193651.61290323, 166033.33333333, 151409.67741935, 155783.33333333, 161629.03225806, 163149.03225806, 172997.14285714, 188775.80645161, 199710.33333333, 206354.19354839, 199661.66666667, 184520. , 162041.29032258, 140093.33333333, 123817.41935484, 125252. , 135171.29032258, 150896.77419355, 167005.17241379, 184938.06451613, 190921.33333333, 204007.41935484, 203726.33333333, 194710.96774194, 172976.77419355, 142157.33333333, 123654.83870968, 128414.33333333, 145727.74193548, 168693.5483871 , 191200. , 215167.74193548, 232133.33333333, 242161.29032258, 241496.66666667, 232438.70967742, 211806.4516129 , 183190. , 156074.19354839, 159243.33333333, 155912.90322581, 142030. , 163491.42857143, 188228.38709677, 198844. , 207087.41935484, 204731.66666667, 196745.48387097, 179346.12903226, 154155. , 123973.5483871 , 124111. , 141002.90322581, 162230.32258065, 175321.42857143, 180266.12903226, 198963.33333333, 211352.58064516, 211513.33333333, 200843.22580645, 184580.32258065, 156218.66666667, 126294.19354839, 120911.66666667, 128217.09677419, 123825.80645161, 131867.24137931, 147475.80645161, 167947.66666667, 170802.25806452, 160388. , 147620.64516129, 134309.35483871, 124250. , 117393.5483871 , 113687.66666667, 129579.35483871, 163096.77419355, 176657.14285714, 196606.4516129 , 213066.66666667, 219858.06451613, 214733.33333333, 203861.29032258, 181938.70967742, 158683.33333333, 140480.64516129, 143673.33333333, 159051.61290323, 185187.09677419, 200853.57142857, 217022.58064516, 226426.66666667, 232941.93548387, 231390. , 224377.41935484, 203893.5483871 , 180130. , 157925.80645161, 145620. , 152058.06451613, 150042.58064516, 154928.21428571, 161921.61290323, 179091. , 195296.4516129 , 194992. , 183491.61290323, 160557.41935484, 122615.33333333, 107430.32258065, 114322.66666667, 133936.4516129 , 158506.4516129 , 173765.51724138, 197551.61290323, 214376.66666667, 222306.4516129 , 219183.33333333, 207396.77419355, 185370.96774194, 158843.33333333, 137006.4516129 , 140616.66666667, 147164.51612903, 155704.19354839, 167337.5 , 190723.22580645, 215615.66666667, 227680. , 217498. , 198920.32258065, 171635.80645161, 136804. , 113224.83870968, 114868.33333333, 126282.90322581, 132720. , 141332.14285714, 154368.70967742, 167472.33333333, 183548.70967742, 185866. , 182069.03225806, 161955.16129032, 131511. , 107265.80645161, 116008.66666667, 130903.87096774, 157685.48387097, 179518.57142857, 204841.93548387, 217696. , 232756.12903226, 233121. , 222678.70967742, 203346.4516129 , 174129.33333333, 142250.32258065, 130017.33333333, 133642.58064516, 153687.09677419, 168531.03448276, 187735.48387097, 209240. , 225093.5483871 , 220770. , 214709.67741935, 197680.64516129, 172570. , 149845.16129032, 142913.33333333, 140841.93548387, 153865.80645161, 175410. , 195322.90322581, 215774.33333333, 218854.83870968, 214689.33333333, 202696.77419355, 179495.16129032, 153604.66666667, 129823.87096774, 127428. , 137232.25806452, 162026.4516129 , 168710.71428571, 185858.70967742, 202931.66666667, 212483.22580645, 216822.66666667, 210545.16129032, 192482.90322581, 167656.33333333, 136548.06451613, 133883.33333333, 145234.83870968, 153135.48387097, 162914.28571429, 172335.48387097, 194616.66666667, 205812.90322581, 207393.33333333, 199445.16129032, 184132.25806452, 161760. , 136606.4516129 , 133133.33333333, 134096.77419355, 147745.16129032, 161437.93103448, 174722.58064516, 191656.66666667, 200106.4516129 , 192553.33333333, 180912.90322581, 167948.38709677, 150356.66666667, 135158.06451613, 131036.66666667, 138129.03225806, 147398.06451613, 157749.64285714, 186830.96774194, 204369. , 213724.51612903, 201741.66666667, 183395.48387097, 154392.90322581, 124483.66666667, 109595.80645161, 120522. , 136406.77419355, 166021.61290323, 187329.28571429, 211292.25806452, 223593.33333333, 240700.64516129, 232577.33333333, 211487.41935484, 180836.12903226, 150470.66666667, 128098.70967742, 133381.33333333, 148725.16129032, 159992.90322581, 172859.28571429, 183024.83870968, 198079.66666667, 215370.96774194, 216587.33333333, 203909.03225806, 181683.87096774, 149543.66666667, 128128.06451613, 132560.33333333, 145751.61290323, 180690.32258065, 198544.82758621, 214406.4516129 , 221700. , 225629.03225806, 230763.33333333, 229022.58064516, 203406.4516129 , 163803.33333333, 140361.29032258, 143526.66666667, 161583.87096774, 189352.25806452, 211859.28571429, 225068.38709677, 225309.33333333, 225533.5483871 , 230320. , 235092.58064516, 230592.58064516, 192166.33333333, 143407.74193548, 130934. , 141044.51612903, 154912.25806452, 168668.57142857, 178728.06451613, 203335.66666667, 219332.25806452, 218130.66666667, 207869.03225806, 178834.83870968, 131336. , 100585.48387097, 105920.33333333, 124484.19354839, 147180. , 169073.57142857, 192771.93548387, 208831.33333333, 219251.61290323, 224297. , 222512.90322581, 198161.93548387, 145980.33333333, 123462.58064516, 124918.66666667, 139176.4516129 , 170761.93548387, 198367.5862069 , 215769.67741935, 219950.33333333, 224648.70967742, 228148.66666667, 229854.19354839, 206959.67741935, 159179.33333333, 124828.38709677, 121630.33333333, 131487.09677419, 161041.93548387, 182385.71428571, 209870.96774194, 218096.66666667, 224183.87096774, 228973.33333333, 228990.32258065, 209925.80645161, 184420. , 153238.70967742, 151423.33333333, 163387.09677419, 177458.06451613, 191432.14285714, 210151.61290323, 217743.33333333, 222870.96774194, 226630. , 229683.87096774, 224922.58064516, 192666.66666667, 157038.70967742, 151176.66666667, 159619.35483871, 169440.64516129, 185877.5 , 206551.29032258, 216025.33333333, 220146.77419355, 224027. , 226647.09677419, 220963.87096774, 191105. , 131321.61290323, 122400.66666667, 124959.35483871, 129328.33333333, 137817.5 , 158168.33333333, 181599.31034483, 198211. , 198985.51724138, 193301.33333333, 177075. , 145862.75862069, 118326.33333333, 145490.71428571, 159520. , 164965.48387097, 187271.78571429, 208632.25806452, 212934. , 219757.74193548, 221421.33333333, 217095.16129032, 190022.90322581, 143501. , 124655.80645161, 133603.66666667, 143294.83870968, 162214.19354839, 180397.85714286, 191146.12903226, 203585. , 216165.16129032, 219578.33333333, 218352.58064516, 201040.64516129, 177149.66666667, 133309.67741935, 127903. , 159911.93548387, 185796.77419355, 202632.14285714, 214106.4516129 , 218686.66666667, 225622.58064516, 229726.66666667, 230964.51612903, 218274.19354839, 185626.66666667, 142461.29032258, 148210. , 185806.66666667])
- date(date)datetime64[ns]1968-01-31 ... 2019-12-31
array(['1968-01-31T00:00:00.000000000', '1968-02-29T00:00:00.000000000', '1968-03-31T00:00:00.000000000', ..., '2019-10-31T00:00:00.000000000', '2019-11-30T00:00:00.000000000', '2019-12-31T00:00:00.000000000'], dtype='datetime64[ns]')
- year: 52
- 1.93e+05 1.949e+05 2.048e+05 ... 2.214e+05 2.196e+05 2.31e+05
array([193017.24137931, 194876.77419355, 204845.16129032, 225710. , 220783.87096774, 215596.66666667, 229090.32258065, 233406.66666667, 236377.41935484, 216980. , 216806.4516129 , 215718.06451613, 170154.66666667, 183706.12903226, 229500. , 173078.06451613, 216577.41935484, 187064.51612903, 214938.70967742, 206354.19354839, 204007.41935484, 242161.29032258, 207087.41935484, 211513.33333333, 170802.25806452, 219858.06451613, 232941.93548387, 195296.4516129 , 222306.4516129 , 227680. , 185866. , 233121. , 225093.5483871 , 218854.83870968, 216822.66666667, 207393.33333333, 200106.4516129 , 213724.51612903, 240700.64516129, 216587.33333333, 230763.33333333, 235092.58064516, 219332.25806452, 224297. , 229854.19354839, 228990.32258065, 229683.87096774, 226647.09677419, 198985.51724138, 221421.33333333, 219578.33333333, 230964.51612903])
- year(year)int641968 1969 1970 ... 2017 2018 2019
array([1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019])
[<matplotlib.lines.Line2D at 0x2ac6e4bc9b80>]

UNSEEN floods¶
Load the simulations (discharge_monthAvg_presentDay.nc) available at https://doi.org/10.5281/zenodo.4585400 or download them in the ../Data directory by uncommenting and running the following line:
!wget -O ../Data/discharge_monthAvg_presentDay.nc https://zenodo.org/record/4585400/files/discharge_monthAvg_presentDay.nc
--2021-10-07 13:09:36-- https://zenodo.org/record/4585400/files/discharge_monthAvg_presentDay.nc
Resolving zenodo.org (zenodo.org)... 137.138.76.77
Connecting to zenodo.org (zenodo.org)|137.138.76.77|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 247755472 (236M) [application/octet-stream]
Saving to: ‘../Data/discharge_monthAvg_presentDay.nc’
100%[======================================>] 247,755,472 40.7MB/s in 5.8s
2021-10-07 13:09:42 (40.7 MB/s) - ‘../Data/discharge_monthAvg_presentDay.nc’ saved [247755472/247755472]
Amazon_simulated = xr.open_dataset('../Data/discharge_monthAvg_presentDay.nc')
Amazon_simulated #to show
/home/tike/miniconda3/envs/exp/lib/python3.8/site-packages/xarray/coding/times.py:426: SerializationWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using cftime.datetime objects instead, reason: dates out of range
dtype = _decode_cf_datetime_dtype(data, units, calendar, self.use_cftime)
/home/tike/miniconda3/envs/exp/lib/python3.8/site-packages/numpy/core/_asarray.py:85: SerializationWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using cftime.datetime objects instead, reason: dates out of range
return array(a, dtype, copy=False, order=order)
- lat: 44
- lon: 70
- time: 24000
- time(time)object0001-01-03 00:00:00 ... 2055-01-01 00:00:00
- standard_name :
- time
- long_name :
- Days since 1901-01-01
array([cftime.DatetimeGregorian(0001-01-03 00:00:00), cftime.DatetimeGregorian(0002-01-03 00:00:00), cftime.DatetimeGregorian(0003-01-03 00:00:00), ..., cftime.DatetimeGregorian(2053-01-01 00:00:00), cftime.DatetimeGregorian(2054-01-01 00:00:00), cftime.DatetimeGregorian(2055-01-01 00:00:00)], dtype=object)
- lat(lat)float324.75 4.25 3.75 ... -16.25 -16.75
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array([ 4.75, 4.25, 3.75, 3.25, 2.75, 2.25, 1.75, 1.25, 0.75, 0.25, -0.25, -0.75, -1.25, -1.75, -2.25, -2.75, -3.25, -3.75, -4.25, -4.75, -5.25, -5.75, -6.25, -6.75, -7.25, -7.75, -8.25, -8.75, -9.25, -9.75, -10.25, -10.75, -11.25, -11.75, -12.25, -12.75, -13.25, -13.75, -14.25, -14.75, -15.25, -15.75, -16.25, -16.75], dtype=float32)
- lon(lon)float32-79.75 -79.25 ... -45.75 -45.25
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array([-79.75, -79.25, -78.75, -78.25, -77.75, -77.25, -76.75, -76.25, -75.75, -75.25, -74.75, -74.25, -73.75, -73.25, -72.75, -72.25, -71.75, -71.25, -70.75, -70.25, -69.75, -69.25, -68.75, -68.25, -67.75, -67.25, -66.75, -66.25, -65.75, -65.25, -64.75, -64.25, -63.75, -63.25, -62.75, -62.25, -61.75, -61.25, -60.75, -60.25, -59.75, -59.25, -58.75, -58.25, -57.75, -57.25, -56.75, -56.25, -55.75, -55.25, -54.75, -54.25, -53.75, -53.25, -52.75, -52.25, -51.75, -51.25, -50.75, -50.25, -49.75, -49.25, -48.75, -48.25, -47.75, -47.25, -46.75, -46.25, -45.75, -45.25], dtype=float32)
- discharge(time, lat, lon)float32...
- standard_name :
- discharge
- long_name :
- discharge
- units :
- m3s-1
[73920000 values with dtype=float32]
And select grid cells corresponding to (sub)catchment outlets
Amazon = Amazon_simulated['discharge'].sel(lon=-51.75,lat=-1.25)#.sel(lon=-50.25,lat=0.25) ## Select the timeseries in the gridcell at the mouth of the river
Manaus = Amazon_simulated['discharge'].sel(lon=-59.75,lat=-3.25)
Obidos = Amazon_simulated['discharge'].sel(lon=-55.75,lat=-2.25)
Tapajos = Amazon_simulated['discharge'].sel(lon=-55.25,lat=-2.75)
Xingu = Amazon_simulated['discharge'].sel(lon=-52.25,lat=-1.75)
Now we will select the annual monthly streamflow maxima.
I couldnt assign 2000 years of data to the time dimension of xarray. Hence, I assigned a new coordinate with the years 0-1999.
Amazon = Amazon.assign_coords({'year': ('time', np.repeat(np.arange(2000),12))} )
Amazon
Amazon_annual = Amazon.groupby("year").max(dim="time")
Amazon_annual
Obidos = Obidos.assign_coords({'year': ('time', np.repeat(np.arange(2000),12))} )
Obidos
Obidos_annual = Obidos.groupby("year").max(dim="time")
Obidos_annual
- time: 24000
- 185345.83 211996.66 241979.86 ... 153125.78 144078.7 152582.12
array([185345.83, 211996.66, 241979.86, ..., 153125.78, 144078.7 , 152582.12], dtype=float32)
- time(time)object0001-01-03 00:00:00 ... 2055-01-01 00:00:00
- standard_name :
- time
- long_name :
- Days since 1901-01-01
array([cftime.DatetimeGregorian(0001-01-03 00:00:00), cftime.DatetimeGregorian(0002-01-03 00:00:00), cftime.DatetimeGregorian(0003-01-03 00:00:00), ..., cftime.DatetimeGregorian(2053-01-01 00:00:00), cftime.DatetimeGregorian(2054-01-01 00:00:00), cftime.DatetimeGregorian(2055-01-01 00:00:00)], dtype=object)
- lat()float32-1.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-1.25, dtype=float32)
- lon()float32-51.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-51.75, dtype=float32)
- year(time)int640 0 0 0 0 ... 1999 1999 1999 1999
array([ 0, 0, 0, ..., 1999, 1999, 1999])
- standard_name :
- discharge
- long_name :
- discharge
- units :
- m3s-1
- year: 2000
- 287012.72 301987.78 358596.53 ... 407820.25 378064.0 341684.56
array([287012.72, 301987.78, 358596.53, ..., 407820.25, 378064. , 341684.56], dtype=float32)
- lat()float32-1.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-1.25, dtype=float32)
- lon()float32-51.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-51.75, dtype=float32)
- year(year)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- time: 24000
- 152280.95 175300.23 192076.03 ... 126738.73 118734.34 128958.37
array([152280.95, 175300.23, 192076.03, ..., 126738.73, 118734.34, 128958.37], dtype=float32)
- time(time)object0001-01-03 00:00:00 ... 2055-01-01 00:00:00
- standard_name :
- time
- long_name :
- Days since 1901-01-01
array([cftime.DatetimeGregorian(0001-01-03 00:00:00), cftime.DatetimeGregorian(0002-01-03 00:00:00), cftime.DatetimeGregorian(0003-01-03 00:00:00), ..., cftime.DatetimeGregorian(2053-01-01 00:00:00), cftime.DatetimeGregorian(2054-01-01 00:00:00), cftime.DatetimeGregorian(2055-01-01 00:00:00)], dtype=object)
- lat()float32-2.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-2.25, dtype=float32)
- lon()float32-55.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-55.75, dtype=float32)
- year(time)int640 0 0 0 0 ... 1999 1999 1999 1999
array([ 0, 0, 0, ..., 1999, 1999, 1999])
- standard_name :
- discharge
- long_name :
- discharge
- units :
- m3s-1
- year: 2000
- 237567.19 241490.0 267892.1 286408.94 ... 337493.94 296771.4 278421.6
array([237567.19, 241490. , 267892.1 , ..., 337493.94, 296771.4 , 278421.6 ], dtype=float32)
- lat()float32-2.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-2.25, dtype=float32)
- lon()float32-55.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-55.75, dtype=float32)
- year(year)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
Store the datasets to be used in R¶
Amazon_annual
Obidos_annual
- year: 2000
- 287012.72 301987.78 358596.53 ... 407820.25 378064.0 341684.56
array([287012.72, 301987.78, 358596.53, ..., 407820.25, 378064. , 341684.56], dtype=float32)
- lat()float32-1.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-1.25, dtype=float32)
- lon()float32-51.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-51.75, dtype=float32)
- year(year)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
- year: 2000
- 237567.19 241490.0 267892.1 286408.94 ... 337493.94 296771.4 278421.6
array([237567.19, 241490. , 267892.1 , ..., 337493.94, 296771.4 , 278421.6 ], dtype=float32)
- lat()float32-2.25
- long_name :
- latitude
- units :
- degrees_north
- standard_name :
- latitude
array(-2.25, dtype=float32)
- lon()float32-55.75
- standard_name :
- longitude
- long_name :
- longitude
- units :
- degrees_east
array(-55.75, dtype=float32)
- year(year)int640 1 2 3 4 ... 1996 1997 1998 1999
array([ 0, 1, 2, ..., 1997, 1998, 1999])
Amazon_simulated_annual_df = Amazon_annual.drop(['lat','lon']).to_dataframe()
Amazon_simulated_annual_df.head()
Amazon_simulated_annual_df.to_csv('../Data/Amazon_annual_df.csv')
Obidos_simulated_annual_df = Obidos_annual.drop(['lat','lon']).to_dataframe()
Obidos_simulated_annual_df.head()
Obidos_simulated_annual_df.to_csv('../Data/Obidos_annual_df.csv')
discharge | |
---|---|
year | |
0 | 287012.71875 |
1 | 301987.78125 |
2 | 358596.53125 |
3 | 349216.28125 |
4 | 295950.96875 |
discharge | |
---|---|
year | |
0 | 237567.187500 |
1 | 241490.000000 |
2 | 267892.093750 |
3 | 286408.937500 |
4 | 234192.484375 |